
1

TO: Professors J. Hung and V. Nelson
FROM: Demetris Coleman
SECTION: 003 – Tuesday 3:30 p.m.
DATE: October 21, 2016
SUBJECT: Interfacing Devices Using Parallel IO (Directional Pad)

Abstract

 This report describes the design and test of an interrupt-driven C program for the

STML32L100 microcontroller to interface with a directional pad (D-pad) with auxiliary buttons,

similar to one on a hand-held game. The pressed D-pad button is determined without

interfering with the main programs function.

Problem Description

 The design requires a C program for the STM32L1xx microcontroller to handle button presses

from the Direction Pad in Figure 1. The device has to be physically connected to the

microcontroller to interface through parallel I/O ports. The program is to display, on 4 LEDs, a

continuously looping binary-coded decimal counter that ranges from 0 to 9 [1]. If a D-pad

button is pressed, it should be detected via an interrupt, be identified, and the button’s opcode

(shown in Table 1) should be displayed on the LEDs, instead of the count [1]. The opcode should

be shown for approximately 5 seconds without interrupting the count [1].

Figure 1: Directional Input Pad with two face buttons (right) and its circuit schematic (left).

From Bolton, 2016.

2

Table 1: D-pad Button Opcode Values

Solution Description

 The D-pad is a simple network of switches that shorted a row to a column when a button was

pressed. For the setup, which can be seen in Figure 2, the GPIOC pins are set as outputs for the

LED display. Three GPIOB pins are set as outputs and two were set as inputs with internal pull-

up resistors. The STM32L100 input pins with pull-up resistors are connected to columns (pins 4

and 5 in Figure 1) which are also connected to AND gate inputs. The AND output is connected

to GPIO pin PA1 to trigger an interrupt when the signal falls low. The D-pad rows (pins 1-3) are

connected to output pins on the STML32L100.

 The software is split in to two major parts; the main program and the interrupt service

routine (ISR). The main program (Lab 5, line 145), seen in the first entrance of the appendix,

calls the PinSetup function to configure the microcontroller and enters an infinite loop that

contains a software delay (lab 5, line 62) that lasts approximately 1 second, a first_count (Lab 5,

lin3 69) function that implements the rolling count, and an “IF” statement that chooses

whether to display the counter or the button’s opcode using the global variable DisplayFor5.

D-pad Button Opcode

Up 0x01

Left 0x02

Right 0x04

Down 0x08

Pause 0x10

Reset 0x20

3

Figure 2: Physical connection of D-pad and STM32L100 (left) and schematic (right) showing pull-
up resistor connection.

 The ISR (lab 5, line 80) is called when the voltage falls from high to low on pin PA1. The ISR

sets DisplayFor5 to 5, disables interrupts, and then implements a scanning algorithm. The

algorithm checks if Pin5 is high to determine if the column for Pin4 or Pin5 has been pressed.

After determining and saving the column, the rows are set high one by one until both columns

are set high again. The event of both columns being set high occurs when the row connected to

the column by the button press is set high. After determining the row and column, a nested

“IF-ELSE” statement is used to assign the appropriate opcode. Then the external interrupt

pending request and interrupt mask registers are reset, interrupts are re-enabled, and the rows

are set back to logic LOW. This allows columns to fall from logic HIGH to LOW and trigger an

interrupt when a button is pressed.

 The choice to set the rows last and the implementation of the scanning algorithm caused

errors in the program’s performance. It seemed that the up button was always detected as the

pressed button, no matter what was pressed. By placing breakpoints on the statements that set

the opcode to the correct value, it was discovered that whenever a button was pressed the

4

correct opcode was actually selected. In the next lab period, it was found that this happened

because the interrupt was triggered by the rows being set low after enabling the interrupts.

This retriggered the interrupt, but the next time through, the algorithm saw that the pin5

column was high and assumed the pin4 column was pressed, even though they were both high.

Then it selected the first row that was checked because the columns were both already high.

 To fix this, the statement to set the rows low was moved before clearing the pending request

register and some unnecessary statements were removed. The scanning algorithm was

modified to check if the pin4 and pin5 columns were grounded individually and choose a

default case that didn’t affect the opcode if neither was grounded. This can be seen starting at

line 240 in the Modified ISR section of the appendix compared to lines 87 – 92 in the Lab 5

Program section.

Experiments and Experimental Results

 The program was tested to see if it entered the interrupt service routine by placing

breakpoints inside of it. Initially, the program never entered the ISR. This happened because

the IRQ Handler function, EXTI1_IRQHandler (lab 5, line 80), was misspelled and the ISR did not

clear pending flags and setup the IMR and PR for external interrupts before exiting.

 After making corrections, the period of first_count was tested by measuring the LSB of the

counter. This was found to be 1.000168 s. Interrupt operation was verified by inspecting the

LEDs and using the watch window to track the variable OPCODE for the debugger. The same

tools were used with the addition of the variables row and column to verify that the correct

opcode was being detected. Sometimes the buttons produced the correct opcode, but then the

program immediately snapped to an incorrect code. Other times it produced the wrong code all

5

together. The problem seemed to be that the wrong row was sometimes detected. Adding

short delays between setting a row high and checking to see if the column returned to high in

our row scan algorithm fixed the problem. The logic analyzer (Figure 3) was used to show that

the program worked to the specification explained in the design description section. However,

the program returned to its former behavior before the end of lab. While it was working the

display did not display anything for some opcodes because it had too few bits to display two of

the opcodes (0x20, 0x10).

Results

 The counter continuously counts from 0 to 9, and when a D-pad button is pressed, the

interrupt routine displays an opcode on the counter’s display for 5 seconds before displaying

the counter again without a break in its count sequence. This operation can be seen in Figure 3.

Showing the opcode on the display was not always optimal because they are 8 bit numbers

with the highest (0x20) needing at least 6 bits to be sufficiently displayed. Instead of using the

LED display, each button was verified to set the OPCODE variable to the correct opcode (as seen

in Table 2) using the watch window debugging tool. As described in the previous section, the

program did have a problem producing the value 0x01, despite what button was pressed.

However, in following labs, each button was used to call a unique display on an LED and specific

musical notes. The relationship between the LED matrix and the opcodes are described Table 2

and shown in Figure 4. This served as an alternative to showing the opcode. The visual, real

time feedback allowed for a better understanding of the system and led to the modifications

(lines 240-248) in the Modified ISR section of the appendix.

6

Figure 3: Counter display interrupted by Opcode value for UP button for 5 seconds

Table 2: Correlation of OPCODE and LED Matrix Display

Figure 4: LED Matrix Display Confirming OPCODE Values

Conclusions

 At the end of lab 5, all of the specifications for the program except the D-pad scanning

algorithm completely met the design specifications. After modifying the algorithm in later labs,

the D-pad interrupt meets all the desired design specifications. It successfully scans rows and

columns to detect which button was pressed and output the desired opcode specified in Table

D-pad Button Opcode Display

Up 0x01 Up Arrow

Left 0x02 Left arrow

Right 0x04 Right Arrow

Down 0x08 Down Arrow

Pause 0x10 Letter P

Reset 0x20 Invert Current Display

7

2. It also successfully sets the microcontroller conditions so the interrupt can be triggered again

after leaving the ISR.

 There are a few things to take away from interfacing devices using parallel IO. For hardware, it

is important to make sure the microcontroller is configured correctly. On the software side, it is

important to check the order of resetting the conditions for the interrupt at the end of the ISR.

Having a command that triggers your interrupt after clearing flags and interrupt request will

cause problems. Also, care should be taken to check each possible condition in the scanning

algorithm, rather than assuming that it is another if the other conditions are not satisfied. A

more efficient scanning algorithm could be implemented by giving the D-pad more carefully

thought out Opcodes. For instance, the opcode could be calculated in the scanning algorithm if

the opcode was based on the row column position of each button in the circuit.

8

References

[1] M. Bolton, Lab 5 Alternate Assignment. Auburn, AL: ELEC 3040/50 Lab Manual, 2016

Appendix

• Lab 5 program

• Modified ISR

Lab 5 Program
 1 /*

 2 *Lab 5 - Dpad Interface Using Parallel I/O

 3 *Demetris Coleman and Justin Whaler

 4 *ELEC 3040/ELEC 3050

 5 *9/11/2016

 6 */

 7

 8 /* old buggy code for row scan in ISR

 9 //may need to nest the 2nd and 3rd if statements if row always turns

out to be 3

 10 GPIOB->ODR |= 0x0001;//set row 1 high

 11 if((GPIOB->IDR & 0x0030) == 0x0030) {//if PB5=1 and PB4=1 row 1

presseed

 12 row = 1;

 13 }

 14 GPIOB->ODR |= 0x0002;//set row 2 high

 15 if ((GPIOB->IDR & 0x0030) == 0x0030){//if PB5=1 and PB4=1 row 2

presseed

 16 row = 2;

 17 }

 18 GPIOB->ODR |= 0x0004;//set row 3 high

 19 if ((GPIOB->IDR & 0x0030) == 0x0030){//if PB5=1 and PB4=1 row 3

presseed

 20 row = 3;

 21 */

 22

 23 //***

 24 // Library includes and Variables

 25 #include "STM32L1xx.h" /* Microcontroller information */

 26 int count = 0; //Global variables

9

 27 int DisplayFor5 = 0;

 28 int column, row;

 29 uint16_t OPCODE = 0;

 30

 31

 32 //************** Pin Setup **********************

 33 void PinSetup () {

 34 /* Configure PA0 as input pin to read push button */

 35 RCC->AHBENR |= 0x01; /* Enable GPIOA clock (bit 0) */

 36 GPIOA->MODER &= ~(0x000000FF); // set PA1 as input port

 37 RCC->AHBENR |= 0x02; /* Enable GPIOB clock (bit 1) */

38 RCC->AHBENR |= 0x04; /* Enable GPIOC clock (bit 2) */

 39 //GPIO pin setup

 40 //GPIOA->MODER &= ~(0x00000030); // set PA2 as input port

 41 GPIOC->MODER &= ~(0x000FFFFF); // Clears PC0-PC9

 42 GPIOC->MODER |= (0x00055555); // and sets them as outputs

 43 GPIOB->MODER &= ~(0x0000FFFF); // Clears PB0-PB5

 44 //GPIOB->MODER |= (0x0000057F); //sets PB0-PB2 (inputs) and PB3-

5(outputs)

 45 GPIOB->MODER |= (0x00000015);//sets PB0-PB3 (outputs) and PB4-

5(inputs)

 46 //D-pad setup

 47 GPIOB->ODR &= 0xFFF8; //set rows 1-3 to ground

 48 GPIOB->PUPDR &= ~(0x00003FC0);// clear PB4 and PB5

 49 GPIOB->PUPDR |= (0x00001540); //pull up resistors on PB4 and 5

 50 //Interupt Initialization

 51 EXTI->FTSR = 0x0000;

 52 EXTI->FTSR |= 0x0002;//falling edge trigger. RTSR for rising

 53 EXTI->IMR = 0x0003;

 54 EXTI->PR |= 0x0003;

 55 SYSCFG -> EXTICR[0] &= 0xFF00;

 56 NVIC_EnableIRQ(EXTI1_IRQn); //PA1

 57 NVIC_ClearPendingIRQ(EXTI1_IRQn);

 58 __enable_irq();

 59 }

 60 //************** Functions ******************

 61 /* Half Second Delay Function */

 62 void delay(void) { // 1 second delay

 63 int i, j;

 64 for (i=0; i<100; i++) { // outer loop

 65 for (j=0; j<20000; j++) { // inner loop

 66 }

 67 } // Just letting time pass

68 }

 69 void first_count() { // increments global variable count

 70 if (count >= 9) { // loop around if counter reaches 9

 71 count = 0;

 72 }

 73 else {

 74 count++; // increment count

 75 }

 76 }

 77 //--|

 78 // Interupt Handlers |

 79 //--|

 80 void EXTI1_IRQHandler() {//inputs(0-2) and outputs(4-5) may need to be

switched

10

 81 int i=0;

 82 //if(DisplayFor5 != 5) {

 83 DisplayFor5=5;

 84 __disable_irq();

 85 //if ((GPIOB->IDR & 0x0030) == 0x0030) {

 86 for (i=0 ; i<90; i++){ } //debouncing delay

 87 if((GPIOB->IDR & 0x0030) == 0x0010) {//if PB5=0 and PB4=1 column

pressed is 5

 88 column = 5;

 89 }

 90 else {//else column is 4

 91 column = 4;

 92 }

 93 //scan rows

 94 GPIOB->ODR |= 0x0001;//set row 1 high

 95 for (i=0;i<10;i++);

 96 if((GPIOB->IDR & 0x0030) == 0x0030) {//if PB5=1 and PB4=1 row 1

presseed

 97 row = 1;

 98 }

 99 else {

100

101 GPIOB->ODR |= 0x0002;//set row 2 high

102 for (i=0;i<10;i++);

103 if ((GPIOB->IDR & 0x0030) == 0x0030){//if PB5=1 and PB4=1 row 2

presseed

104 row = 2;

105 }

106 else {

107 GPIOB->ODR |= 0x0004;//set row 3 high

108 for (i=0;i<10;i++);

109 if ((GPIOB->IDR & 0x0030) == 0x0030){//if PB5=1 and PB4=1 row 3

presseed

110 row = 3;

111 }

112 }

113 }

114

115 //check button by column and row combination

116 if (column == 4) {

117 if (row==1)

118 OPCODE=0x0001;//up

119 else if (row==2)

120 OPCODE=0x0002;//left

121 else if (row ==3)

122 OPCODE=0x0008;//down

123 }

124 else if (column==5) {

125 if (row==1)

126 OPCODE=0x0020;//reset

127 else if (row==2)

128 OPCODE=0x0004;//right

129 else if (row ==3)

130 OPCODE=0x0010; //pause

131 }

132 //}

133 EXTI->IMR = 0x0003;

11

134 EXTI->PR |= 0xFFFC;

135 for(i=0;i<40000;i++);

136 NVIC_ClearPendingIRQ(EXTI1_IRQn);

137 __enable_irq();

138 GPIOB->ODR &= 0xFFF8; //set rows 1-3 to ground

139 //set PB4 and 5 back high?

140 }

141

142

143 //------------------------------------|

144 // Main |

145 //------------------------------------|

int main(void) {

147 // initialize port directions and variables

148 PinSetup();

149

150 // counter loop

151 while(1) { // endless loop

152 delay(); // Run Delay

153 first_count(); // Execute Counter by one step

154 if (DisplayFor5<=0){

155 GPIOC->ODR = (count); // write count to PC0-PC7

156 }

157 else {

158 DisplayFor5--;

159 GPIOC->ODR = (OPCODE);

160 }

161 }

162 }

163

Modified ISR

233 void EXTI1_IRQHandler() {// Dpad - inputs(0-2) and outputs(4-5) may need

to be switched

234 int i=0;

235 //if(DisplayFor5 != 5) {

236 //DisplayFor5=5;

 //__disable_irq();

238 //if ((GPIOB->IDR & 0x0030) == 0x0030) {

239 for (i=0 ; i<50; i++){ } //debouncing delay

240 if((GPIOB->IDR & 0x0030) == 0x0010) {//if PB5=0 and PB4=1 column

pressed is 5

241 column = 5;

242 }

243 else if((GPIOB->IDR & 0x0030) == 0x0020) { //else column is 4

244 column = 4;

245 }

246 else {

247 column = 0;

248 }

249 //scan rows

250 GPIOB->ODR |= 0x0001;//set row 1 high

251 for (i=0;i<10;i++);

252 if((GPIOB->IDR & 0x0030) == 0x0030) {//if PB5=1 and PB4=1 row 1

12

presseed

253 row = 1;

254 }

255 else {

256

257 GPIOB->ODR |= 0x0002;//set row 2 high

258 for (i=0;i<10;i++){}

259 if ((GPIOB->IDR & 0x0030) == 0x0030){//if PB5=1 and PB4=1 row 2

presseed

260 row = 2;

 }

262 else {

263 GPIOB->ODR |= 0x0004;//set row 3 high

264 for (i=0;i<10;i++){}

265 if ((GPIOB->IDR & 0x0030) == 0x0030){//if PB5=1 and PB4=1 row 3

presseed

266 row = 3;

267 }

268 }

269 }

271 //check button by column and row combination

272 if (column == 0) {

273 }

274 else if (column == 4) {

275 if (row==1)

 OPCODE=0x0001;//up

277 else if (row==2)

278 OPCODE=0x0002;//left

279 else if (row ==3)

280 OPCODE=0x0008;//down

281 }

282 else if (column==5) {

283 if (row==1)

284 OPCODE=0x0020;//reset

285 else if (row==2)

286 OPCODE=0x0004;//right

287 else if (row ==3)

288 OPCODE=0x0010; //pause

289 }

290 //}

291

292 GPIOB->ODR &= 0xFFF8; //set rows 1-3 to ground

293 for(i=0;i<30000;i++);

294 EXTI->PR |= 0x0002;

295 //NVIC_ClearPendingIRQ(EXTI1_IRQn);

296 for(i=100; i>0; i--);

297 //__enable_irq();

298

299 //set PB4 and 5 back high?

300 }

13

Cover Sheet

Deleted colons from header.

Fixed grammar/formatting issues

Changed tense to make it consistent throughout the paper

Clarified Dr.Nelms’ questions on page 3 in the solutions description section

Added more detail to Experiments and Experimental Results section

Added a bit more detail to conclusion

Modified Figure 4

