ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

LAB 2: Developing and Debugging C Programs in MDK-ARM
for the STM32L100RC Microcontroller

The objective of this laboratory session is to become more familiar with the process for
creating, executing and debugging application programs, written in the C language, for
the ST Microelectronics ultra-low-power STM32L100RC microcontroller, using the Keil
Microcomputer Development Kit for ARM Processors (MDK-ARM). You are to design a
C program, containing a “main” program and two subroutines, to exercise various 1/O
ports and elements of the microcontroller. In the lab, you will also exercise a number of
the debug support elements of MDK-ARM, so that you will be better prepared for
debugging larger projects later in the semester. An outline of this lab write-up is
organized as follows.

A. STM32L100RC microcontroller block diagram and GPIO ports.
1. Block diagram and GPIO ports
2. Configuring the GPIO ports
3. Transferring data to and from GPIO pins
Microcontroller Software Setup in C and MDK-ARM
Data types and variables in C
Laboratory Exercise
Lab 2 Deliverables

moow

For reference, the tutorial C Programming for Embedded Systems is available on the
course web page, which includes links to additional on-line tutorials. The ARM C
Compiler manual is available from the MDK-ARM Help menu, or from the Books pane
of your project in the MDK-ARM IDE.

A. STM32L100RC General-Purpose Input/Output (GPIO) Pins
1. Microcontroller block diagram and GPIO ports

The STM32L100RC microcontroller simplified block diagram is given in Figure 1, with
a detailed block diagram in Figure 2. The microcontroller includes the 32-bit ARM
Cortex-M3 CPU, 256K bytes of flash memory, 16K bytes of RAM, general-purpose
input/output (GPIO) ports, nested vectored interrupt controller (NVIC), programmable
timers (TIMERnN, RTC), analog-to-digital and digital-to-analog converters (ADC, DAC),
comparators, serial communication functions (USART, 12C, SPI, SCI, USB), debug
interfaces (SW, JTAG), LCD controller, and clock management.

As shown in Figure 2, the microcontroller has five GPIO ports (GPIOA, GPIOB, GPIOC,
GPIOD, GPIOH), with a total of 63 I/O pins. 51 of these pins are accessible via
connectors P1 and P2 of the STM32L100C-Discovery board, as shown in Figure 3.
GPIOA - PA[15:0], GPIOB - PB[15:0], GPIOC - PC[15:0]
GPIOD - PDI[2], GPIOH - PHJ[1:0]

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

Several pins are used on the Discovery board for specific functions:

PAO — User button

PA13, PAl14 - Single-Wire (SW) debug interface

PC8,P,C9 — On-board Blue and Green LEDs

PH1,PHO —8MHz clock input/output
Special care should be taken not to alter the configurations of pins PA13, PA14, PH1,
PHO, to prevent disabling the SW debug interface and clock.

As discussed in ELEC 2220, microcontroller signal pins generally have multiple
functions. The default in most cases is general-purpose parallel 1/O; alternate functions
are selected by software. The GPIO pin names are labelled on the Discovery board, as
shown in Figure 3. The alternate functions for each pin are listed in Table 5 of the
Discovery board user manual, and Table 7 of the microcontroller data sheet.

‘ilcﬂ:::ﬁ' Flash
\ FLITF f:_h.ﬂ::::‘ i |
Ciodo EEFATHM
Corlea-M3 -(;P o AN data
Symtam {_: al
DMAT 3
3
by
ot [DA TyEiom b
— fﬁ:} 13 T | Feloro -
. Rasst oot | Jemc
iR, == =L {500
sl .
—] | L GPIO Pins
-
Lotz = T
[y
L
oot | T T =
cnz [7] ..;::—_ 2 regietosliad |6 AEE -
1
Bridga 1 APHIT
+
- USAATI EXTI| [DAC 33|
EPH EYECFRE [FWH P2
Anci COMP 5 Al WIS
TG 454 Do
202 ATC
TR IFa iy TIdT
TIM11 LIEAATS TS
LIEARATZ TIRdS
CRRNFZ TR
OPFRMF TS
DidA, roguesl Thez
DML roquce
WSS TV

Figure 1. STM32L100RC Block Diagram?

1 ST Microelectronics “STM32L.100xx Reference Manual (RM0038)”

~2~

ELEC 3040/3050 Lab Manual

Lab 2 Revised 8/20/14

Ve
Vooncose Y POWER |—"..I'J_|=‘.-E-"|.I'1CI3.6V
MJTRET JTAG & SW “-.__ = EEPROM 54 hit L"-"-_--_:
JTOi Coivedd Ibus A% o 256 KB
JrcrsweLd || M3 ceu © . 5| PROGRAM
JTMS/SWDAT . = W= | 4 KBDATA
. 52 MHz @ 3 = : L NRST
DO - B KB BOOT
A3 AF MeU_] Ea-—- SRAM 6K| ppR -
NWVIC
7/ i
ETE e — [gg:—g‘m
— - AHPBLCLE Sl
GF DdA2 S chamnels {::} APBPCLIC
d HC LK+
FC L
Supply WDGIZK
Vo1 monverng i) Sy
Vst | [EcRiEsar JreoR Eoaa] i
e S =l - [Secah
SR B | R Loscaz_out
GP Comp J+* EVoos - RTC OUT
COMPYL INx . IW n RTC VI : !
. 3 L [5x 32-B TAMPER
Voo - ‘:::' DExup
A il
PA[15:0 GRID PORTA) —————1 reg.
[15 J(::t-’ \—|.-"} oy ﬁl Backup interface
A e I —
PE[15:0] {54 GPIC PORTE |) an,
. —1 ;i _ .
GPIO Pins PC|15:0] <4 GPID PORTC —) = LCDOBooater Vien=28Vio3.6W
& . i
PD[15: GPIO PORTD TIMERZ O 4 Channels
PH [210] GFI0 PORTHE c— TIMER: s 4 Channels
—| TIMER4 " 4 Channels
RX TXCTSRTS,
£ L] EXT.IT - KW — _ LIBART2 5 SmartCard 2s AF
51 AFC: ARCLL P ol— _ by R¥ TX.LCTSRTS,
MOS | MISO, HB —V_USARTS K> smanCard as AF
SCH NS 5Pl S ARG
a8 AF) MOS]MIS O SCK NSS,
RXTXCTS &N sARTT K—"> — SPEAZS [WS, CK,MCK, 50 a5 AF
RS, SmexiCan] MOSI MISO,SCK NSS
a5 AF G e, SPI3NZS o 05 MIS QL SCK, '
py v WS, CH, MK, 50 as AF
20 e g T =] LISE SRAM 5128 f = -
S o
Win WATEHD SCL, S04 SMBus PMB
~ CL,] us, us
.% l2c2 '(::::"as AF
5 TIMERE [
A — -, [Use_oP
n TMERT | SB_OM
General punposs j EGx
Bmeere a = |com
2Ena"u".e5¢ TIMERS [— _
P b1 Voo
channe! <D TaiERin K—>) = L oacouries
- 12bit DACY .+ DAC_OUT1as AF
1 Channel TIMER1 1 ||
> DAC_OUTZas AF

Figure 2. STM32L100RC Block Diagram?

2 ST Microelectronics “STM32L100RC Data Sheet”

~3~

ELEC 3040/3050 Lab Manual

Lab 2 Revised 8/20/14

(red/green LED) LD2
COM

I ST—IJN K2

"|_LD1 (red LED)
I PWR

| =Nz
N puwa;jsupply TTrem com [iz I I5 lf:_/:m
input/output I GHD | :: - @ | GHD
| |wvLcD [Iz ._,1 L @ | e
CHN3 ara Iz |-
SWD connector I — .: o3 Il-hlﬁD - gg: o
. o LI "’IE”‘-]R" fn
| o |m o = g 2|l i
: PHO | @ = il_IIIIIIIlLli - & [w|7
STM32F103C8T6 — - s my g: o
i I N H 5 chz [0
Microcontroller v | E:\'“HE' o ol
e b ooRml RS, s
[PC1 Fi Mz
T T Por [m[Twwwst.comistma i t=discovery g|aaT
Pan |l X2 u -,,: !M
RGN
PaZ | s | -" | e B
PAS . "‘-“‘—"=====.='=“§5’.r —"‘.'-zmn_
ol b - oMM 17 o
voo (| Y s E‘!: o (P
Pad W = =am 0 .REI‘; IR
s @ 58S =S |e|ean
PAB . == =| —F = . PAID
PAT L TN 3t 1S
STM32L100RCTE — | 7o4 : B1 B2 : e
PCS [] (7]
FED = PCR
B1 user button | :ﬂ= = :.5;—;““
Phz || USER :zéﬁ REEJI'—J—rz ﬁ::. PCE
(green LED) LD3 o0 | S —SEE
11 | FCa PCE TR |
e LY/, vei108 reve b
— ® sTM32L100C-DISCO ™

| &V power supply

: input/output

|
| CH2

| ST-LINK/DIS COVERY
’;Tselectar

|
— 4 JP2

.-""F'f‘-
IDD measurement

|___SB1(VBAT)

| ___—-5B3(B1-USER)
B2 reset button

.—'-'_'-'-'-'_F
|___SB4(B2-RESET)

— LD4 (blue LED)

Figure 3. Top view of the STM32L100C-Discovery Board, showing pin assignments
on 33-pin connectors P1 and P23

3 ST Microelectronics “STM32L100CDiscovery Kit User Manual (UM1656)”

~4~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

2. Configuring GPIO Pins

Figure 4 shows the electronic circuit for one GPIO port bit. Each GP1O pin can be a
digital input, a general-purpose digital output, an analog input/output, or an “alternate
function” input/output. In digital input and output modes, pin data is read from an input
pin or sent to an output pin via the Input Data Register (IDR) and Output Data Register
(ODR), respectively. These registers are bypassed for analog or alternate function modes.
The desired operating mode for each of the 16 pins is selected individually via the 32-bit
GPIO port mode register (MODER), shown in Figure 5. Two bits configure each pin as
follows:

MODERN[1:0] = 00: Digital input mode (reset state, except PA15:13],PB[4:3])
(n = pin#) 01: General-purpose digital output mode

10: Alternate function mode

11: Analog mode

—— e ——— ——— —
To -:_:un-chip :Anal-:ug |
peripheral ornate funcion input |
- —
= | anfoff
B |
- A
z .
pE— | &
g 2 | i
BSRR Zz = trigger
3 g |~ MODER
it = = pinpuamer_ L — —
Writa ; % % . _ ____”___-—_-c
-_E % IDR I-Dutp-ut driver Voo
T L 3 ——[P-mOs
El I Cutput |
E contral
s I I
Readhwrite I E-TLN'MDS I
ODR OTYPER vss Push-pull
From on-chip " | o en;d'aih of I
paripharal Altarnate function output - _dﬁ:-a_bled_ — L aiog
2i15938H
Figure 4. Basic structure of a GP1O port bit.
31 30 29 26 27 26 25 24 23 22 21 20 19 18 17 16

MODER15[1:0] | MODER14[1:0] | MODER13{1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODERS[1:0] | MODERS[1:0]

15 14 13 12 11 10 E 8 7 6 5 4 3 2 1 0

MODERT[1:0] | MODERG[1:0] | MODERS[1:0] | MODER4[1:0] | MODER3[1:0] | MODERZ[1:0] | MODERI[1:0] | MODERO[1:0]

Figure 5. GP1O Mode Register (GPIOn->MODER)

~5~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

Example:
We want to configure pin PC5 as an input pin and PC8 as an output pin, without

changing the operating modes of the other 14 GP10OC pins.

The preferred way to do this is to clear the corresponding MODER bits for each pin,
using a logical AND operator with a mask to force these bits to 00, and then use a logical
OR operator with another mask to force selected MODER bits to 1 to produce the desired
2-bit values. For example, to set bits 5:4 of a register to the value “mn”:

Bit#: 9876543210
Current register bits: abcdefghij
AND with mask to clear bits 5-4: 111100 1111
Result: abcdOOghi j
OR with mask to set bits 5-4 to mn: 0000mn0O00O0

Result: abcdmnghij

Referring to Figure 5, set mode bits MODERS and MODERS (for pins PC5 and PC8) are
forced to 00 by reading the current MODER and applying a logical AND operator to

clear those bits in one of the following ways:

GP10C->MODER = GPIOC->MODER & OxFFFCF3FF; //MODER8=MODER5=00
GPIOC->MODER = GPIOC->MODER & ~0x00030C00; //MODER8=MODER5=00
GPI10C->MODER &= OxFFCFF3FF; //MODER8=MODER5=00
GP10C->MODER &= ~0x00300C00; //NMODER8=MODER5=00

Since 00 selects input mode, PC5 is now configured as an input pin. Note that mask
OxFFFCF3FF contains 0’s in the MODER bits corresponding to pins PC8 and PC5, and
that operand ~0x00030C00 = OXFFFCF3FF. The third and fourth instructions are
identical to the first two instructions, using compact forms supported in the C language.

To configure PC8 in output mode (MODERS = 01), use the logical OR operator in one of

the following ways to set the low bit of MODERS to 1:
GPI0OC->MODER = GPIOC->MODER | 0x00010000; //MODER8=01
GP10C->MODER |= 0x00010000; //NMODER8=01

Although we could simply write a 32-bit pattern to MODER to configure all 16
pins in one step, it is good practice to change only those bits for the specific pins
to be configured, using logical AND/OR operators, and thereby avoid
inadvertently changing the previously-configured modes of other pins.

Other options can be configured for each pin via the following three registers. However,
the reset values of these registers may be sufficient for most applications, and therefore it
might not be necessary to program them.

GPIONn->OTYPER - type of driver for output pins
16-Dbit register, 1 bit per pin:
0: output push-pull (reset state for all pins)
1: output open-drain (if pin is to be combined with other pins as wired-AND/OR)

~6~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

GPIONn->OSPEEDR - output pin switching speed (lower speeds consume less power)
32-bit register, 2-bits per pin:
00: 400 KHz (reset state for all but PB[3])
01: 2 MHz, 10:10MHz, 11:40MHz

GPIONn->PUPDR - activate a pull-up or pull-down resistor on the pin
32-bit register, 2-bits per pin:
00: No pull-up or pull-down (reset state for all but PA[15:13], PB[4])
01: Pull-up
10: Pull-down

3. Transferring data to and from GPIO pins
The states of one or more GPIO pins are determined by reading the 16-bit Input Data

Register (IDR) of the GPIO port, and then masking all but the bit(s) of interest. For
example, to determine the state of pin PAO:

uintlé t bob; //16-bit variable matches IDR size
bob = GPIOA->IDR; //read states of all 16 PA[15:0] pins
bob &= 0x0001; //mask all but bit 0 to test PAO

if (bob == 0x0001) //do something if PAO=1

Alternatively:
if ((GPIOA->IDR & 0x0001) == 0x0001) //do something if PAO=1

A common error is to overlook the fact that reading IDR returns all 16 pin states. For

example:
if (GPIOA->IDR == 0x0001) //do something if PAO=1

would be true only if all 16 bits of GPIOA match the pattern 0000000000000001.

Output pin states are changed by writing to the 16-bit Output Data Register (ODR) of the
GPIO port. Note that this changes all pins in that port that are configured as digital

general-purpose outputs, but has no effect on pins configured in other modes.
GPIOB->0DR = 0x1234; //set PB[15:0] = 0001001000110100

Reading the ODR returns the last value written to it, enabling masks and logical operators

(AND, OR, XOR) to change the states of selected pins, without affecting the other pins.
GPI10B->0DR &= OXFFFE; //reset PBO=0 (without changing PB[15:1])
GPI10B->0DR |= 0x0001; //set PBO=1 (without changing PB[15:1])
GPI0B->0DR ~= 0x0001; //complement PBO state

To facilitate changing selected bits, in lieu of using masks and logical operators, each
GPIO port has a 32-bit Bit Set/Reset Register (BSSR). Writing 1’s to one or more of the
lower 16 bits of BSRR (BSRRL) sets those bits to 1, without affecting the others. Writing
1’s to one or more of the upper 16 bits of BSRR (BSRRH) resets those bits to 0, without
affecting the others. Writing 0’s to BSRRL/BSRRH has no effect on the corresponding

pins. For example, to set and then clear pins PB5 and PBO:
GP10B->BSRRL = 0x0021; //set PB5 and PBO to 1
GPIOB->BSRRH = 0x0021; //reset PB5 and PBO to O

~7 ~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

B. Microcontroller Software Setup in C and MDK-ARM

The purpose of a high level language, such as C, is to allow the programmer to focus on
the algorithm to be performed, independent of the particular processor being used. This is
done by making processor-specific details, such as memory addresses, CPU registers,
data formatting, and assembly language instructions, transparent to the programmer. Such
low level details are managed by the language compiler. Therefore, the compiler must be
provided with ROM and RAM addresses so that it can allocate appropriate memory for
code, data, and stack. The STM32L100RCT6 memory map is shown in Figure 6. MDK-
ARM is provided this information when the target microcontroller is selected at project
creating time; this can be verified in the Target tab of the “Options for Target” window.
In addition, a header file for that microcontroller, which defines such resources as
peripheral function register names and addresses, is included in the project by selecting
CMSIS > CORE in the Manage Run-Time Environment window during project creation.

Address

OXFFFF FFFF ,W

OxEOOF FFFF

X Cortex e Control/data registers: Cortex-M3 CPU functions
0xE000 0000| _registers (NVIC, SysTick Timer, etc.)

.

0x4002 67FF | peripheral
registers

.

16KB RAM |Je—— 16K byte RAM: variable & stack storage

955557

256KB Flash fe&——— 256K byte Flash memory:
program code & constant data storage

le——— Control/data registers: microcontroller peripherals

0x4000 0000 (timers, ADCs, UARTS, etc.)

0x2000 3FFF
0x2000 0000

0x0803 FFFF

Memory

\ Reset & interrupt vectors: in 1%t words of flash memory
Figure 6. STM32L100RCT6 memory map.

0x0800 0000

In assembly language, the programmer must explicitly initialize the stack pointer,
interrupt vectors, clock configuration, etc. To take care of these things, MDK-ARM
allows the user to include manufacturer-supplied “startup code” in a C project by
selecting Device > Startup in the Manage Run-Time Environment window when the
project is created. On reset, the startup code instructions are executed to set up the
microcontroller, prior to entering the “main” program defined by the programmer.
Referring to Figure 4 of the document STM32L100C-Discovery Board Projects, available
on the course web site, in the Project pane of the MDK-ARM IDE window, two startup
files can be seen under Device.

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

File startup_stm3211xx_mdp.s contains an ARM assembly language startup program that
initializes the system stack, calls a function to configure the microcontroller clock
resources, and then jumps to the user’s “main” program. This file also contains a table of
reset and interrupt vectors, which is positioned at the start of the program memory. The
first entries in this table are the initial address of the startup program and the starting
address of the stack; these are loaded into the CPUs program counter and stack pointer
registers, respectively, when the microcontroller is reset. Interrupt vectors will be
discussed in a later lab.

File “system_stm32l1xx.c” contains functions, called by the startup program, that
configure the CPU and peripheral clocks in the microcontroller. For the STM32L100C-
Discovery, the main CPU clock and the clocks for all three peripheral buses (AHB,
APB1, APB2) are configured to operate at 32MHz.

All 1/0 ports and functions in the microcontroller are accessed via “registers”, each of
which is assigned a memory address in the range 0x40000000..0x4003FFFF], as defined
in the STM32L1xx Series Reference Manual, available on the class web page and in the
Books pane of the MDK-ARM Project window. The addresses of all peripheral function
registers are defined in the header file STM32L1xx.h, which is included in the project as
described earlier.

C. Data types and variables in C

When programming in C for a microcontroller, one must be aware of how data types are
defined by the C compiler. For the data types needed in this lab, the ARM C compiler
uses the definitions in Table 1. A data type appropriate for each variable should always
be selected.

Data type declaration * Number of bits Range of values

char k; 8 0..255

unsigned char k;

uint8 t k;

sighed char k; 8 -128..+127

int8_tk;

short k; 16 -32768..+32767

signed short k;

intl6_tk;

unsigned short k; 16 0..65535

uintlo_t k;

int k; 32 -2147483648..

signed int k; +2147483647

int32_tk;

unsigned int k; 32 0..4294967295

uint32_t k;

* intx_t and uintx_t defined in stdint.h
Table 1. Data type definitions for a variable k in the ARM C compiler.

~0~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

Variables in C can be automatic or static. An automatic variable is declared within a
function and is local in scope, i.e. the variable is only accessible within that function.
Space for the variable is allocated on the system stack when the function is entered, and
then de-allocated when the function is exited. Therefore, values are not retained from one
function call to the next. The compiler may choose to allocate CPU registers, instead of
memory, for some local variables while in a function, but as with memory, register-based
local variable values are not retained between function calls.

A static variable can be declared either within or outside of a function. Values of these
variables are retained throughout the execution of the program by assigning them to
RAM locations that are not reallocated during execution of the program. Any variable
defined outside of a function is referred to as global, and has universal scope, i.e. it can
be referenced by any function of a program.

int count; /lglobal variable
void functionl () {

count =1; /[functionl writes global variable count
}

void function2 () {
count = count + 1; //function2 modifies global variable count
}

A static variable can also be defined within a function by inserting the word “static” in
front of the variable definition, as in the following character variable declaration. In this
case, the variable is local in scope, i.e. accessible only within the defining function.

static char bob;

Some compilers support volatile variables, whose values can be changed by outside
influences, i.e. by factors other than program instructions, such as the value of a timer
register or the output of an analog to digital converter. The most common use of volatile
variable definitions in embedded systems will be for I/O ports and peripheral function
registers. For example, the following defines the addresses of 8-bit 1/0 ports A and B of a
Freescale HCS12 microcontroller.

#define PORTA (*((volatile unsigned char*)(0x0000)))

#define PORTB (*((volatile unsigned char*)(0x0001)))
Values read via port A or B are supplied by sources external to the microcontroller, and
therefore such ports are declared as data type “volatile unsigned char” at addresses $0000
and $0001, with identifiers PORTA and PORTB, respectively, defined as pointers to
these addresses. This allows these identifiers to be used as any other program variable, as
illustrated in the following example..

¢ = PORTB; /* read value from PORTB into variable ¢ */

PORTA =c; /* write value to PORTA from variable ¢ */

The convention for defining peripheral register addresses for ARM microcontrollers is
illustrated by the following example, taken from the header file stm32I1xx.h.

~10 ~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

/* */
/* Base address of all STM microcontroller peripherals */
#define PERIPH_BASE ((uint32_t)0x40000000) //Peripheral base address

#define AHBPERIPH_BASE (PERIPH_BASE + 0x20000) //AHB peripherals
/* Base addresses of blocks of GPIO control/data registers */

#define GPIOA_BASE (AHBPERIPH_BASE + 0x0000) //Registers for GPIOA
#define GPIOB_BASE (AHBPERIPH_BASE + 0x0400) //Registers for GPIOB

/* Address offsets from GPIO base address — block of registers defined as a “structure” */

typedef struct
{
__10 uint32_t MODER; // GPIO port mode register, Address offset: 0x00
__ 10 uint16_t OTYPER; // GPIO port output type register, Address offset: 0x04
uintl6_t RESERVEDO; // Reserved, 0x06
__ IO uint32_t OSPEEDR; // GPIO port output speed register, Address offset: 0x08
__10 uint32_t PUPDR; // GPIO port pull-up/pull-down register, Address offset: 0x0OC
__ IO uint16_t IDR; // GPIO port input data register, Address offset: 0x10
uintlé_t RESERVEDI1; // Reserved, 0Ox12
__l0 uintl16_t ODR; // GPIO port output data register, Address offset: 0x14
uintlé_t RESERVED2; // Reserved, 0x16

__l0 uint16_t BSRRL; // GPIO port bit set/reset low register BSRR, Address offset: 0x18
__l0 uint16_t BSRRH; // GPIO port bit set/reset high register BSRR, Address offset: Ox1A
__ 10 uint32_t LCKR; // GPIO port configuration lock register, Address offset: 0x1C
__ 10 uint32_t AFR[2]; // GPIO alternate function low register, Address offset: 0x20-0x24
} GPIO_TypeDef;
/* */

The following instruction writes to the output data register of GP10 port B,
GPIOB->0DR = 0x1122;
The memory address of this register is:
0x40000000 + 0x20000 + 0x0400 +0x14 =0x40020414
Peripheral base + AHB peripherals base + GPIOB base + ODR offset

The following reads the input data register of GPIO port A and assigns it to variable N.
N = GPIOA->IDR;
The address of this register is:
0x40000000 + 0x20000 + 0x0000 +0x10 =0x40020010
Peripheral base + AHB peripherals base + GPIOA base + IDR offset

The programmer should always ensure that the size of the data transferred to and

from a register matches the register size and the data type. In the previous examples,
16-bit values would be written to/read from the 16-bit ODR and IDR registers.

~11 ~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

To test or change individual bits of a data value, logical operators (AND, OR, XOR) must
be used with a “mask”, as in assembly language.

¢ = GPIOB->IDR & 0x0001,; // mask all but bit 0 of data copied to variable c
if (GPIOA->IDR & 0x0001) == 0) // test bit 0 of GPI1O port A
GPIOA->0ODR = c | 0x0001; I/ write ¢ to GPIO port A, with bit 0 set to 1

Note that there is a difference between bit-parallel operators & (AND) and | (OR), which
produce bit-wise results of the corresponding logical operation, and relational operators
&& (AND) and || (OR), which test and produce TRUE/FALSE results (in C, any non-
zero value is considered “TRUE” and a zero value is considered “FALSE”). Consider the
difference between the following two statements, where a and b are 32-bit variables:

if (@ &Db) /* test bitwise AND of variables a and b */

if (@&&b) /*TRUE only if both ais TRUE and b is TRUE */

if (1) /* non-zero is always TRUE */

if (0) /* zero is always FALSE */

In the first case, the bitwise logical AND of the 32-bit values of a and b is computed, and
if all bits = 0, the result would be FALSE, otherwise the result would be TRUE. In the
second case, the result is TRUE if variable a is TRUE and if variable b is TRUE.
Variables a and b are not combined in the second case. The third case is often used for
endless loops — since any non-zero value is always considered TRUE. The fourth case
would never be TRUE.

D. Pre-lab assignment

Each team is to create and debug a C program to meet the following specifications:
1. decade up/down counter: count up or down from 0 to 9, and repeat
2. controlled by two switches, S1 and S2
a. S1: start/stop (1=start, 0 = stop)
b. S2: direction (1 = count down, 0 = count up)
3. switch connections on the microcontroller
a. S1:1/0 port pin PA1 connected to DIOO on the EEBoard
b. S2:1/0 port pin PA2 connected to DIO1 on the EEBoard
4. Changing S2 while counting is enabled (S1=1) should change the count direction
on the next count change.
5. Display the count value by writing to port pins PC[3:0]. In the laboratory, these
lines will be connected to four virtual LEDs.
6. Count period is to be approximately 0.5 s

Prior to lab, design the C program with a main program, and two separate ~ functions”’
as follows.

e The main program is to initialize port directions and variables, and then execute
in an endless loop, calling the delay function, setting the direction variable based
on position of switch S2, and calling the counting function if counting is enabled
by switch S1.

~12 ~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

e A delay function is to implement a half-second time delay (“do nothing” for about
half a second). If time permits, try to get the delay function to be accurate within
10% of the nominal value (0.5 seconds +/- 10%), or better.

e A counting function is to increment or decrement the count, according to the
setting of a direction variable passed as a parameter from main, and display the
new value on the LEDs. The count value is to be a static global variable.

In your laboratory notebook, record the following.
1. program flowcharts
2. draft program and functions (or directions to where they are stored on your H:
drive) If program is not in the notebook, be prepared to show the GTA the draft
program and functions on your computer at the start of lab.
3. anplan for testing (a test procedure)
Teams should be ready to compile their programs and begin testing at the start of the lab
period.

E. Laboratory exercise

Make the following connections between the microcontroller and Digilent EEBoard.

1. The switches are to be push/pull switches, set up for EEBoard digital I/O lines

DIOO0 and D101, and in the Static I/O instrument of Waveforms.
a. S1: DIOO on the EEBoard
b. S2: DIO1 on the EEBoard

2. To display the count value on virtual LEDS, first connect port pins PC[3:0] to
EEBoard digital 1/0 line DIO7-D104. Then configure DIO7-DIO4 as LEDS in
Waveforms.

Compile and debug the program. In debugging the program, you are expected to
demonstrate the use of breakpoints, watch windows, single-step, and other debug features
in MDK-ARM. These are described in the document Project Debugging with MDK-ARM,
used in the first lab, and available on the course web site.

Specifically, do the following in the debugger.

1. Set breakpoints in the main program and in each of the two functions, and verify
that the program reaches these breakpoints as expected.

2. While stopped at a breakpoint, record the values of your different program
variables (from Watch and/or Call Stack+Locals windows.) Note that the only
data values displayed are global variables, and those in the current “scope”, i.e. in
the currently-executing function/procedure. So, if you wish to examine a variable
in a function F, then you’ll need a breakpoint in F and view the variable in the
Call Stack + Locals window.

3. After stopping at a breakpoint, single-step through a few instructions, and record
any changes to the variables. Then you may click “run” to continue the program.

4. Using the disassembled program window (upper right), see if you can determine
the memory addresses assigned to one of your program variables. Then, in the
memory window (bottom right), display the memory area containing that address
and verify that the values match those in the variables window.

5. Remove the breakpoints and run the program to verify correct operation.

~ 13 ~

ELEC 3040/3050 Lab Manual Lab 2 Revised 8/20/14

F. Lab 2 Deliverables:

Lab notebooks are to be submitted to the GTA at the conclusion of the lab period, and
they will be returned at the following Monday’s lecture. As mentioned in the initial lab
lecture, these books are expected to contain your lecture notes, pre-lab work (program
design and test procedure), and notes made during the lab session of tests performed,
observations, design changes, etc. This will be checked by the instructors when the lab
books are collected every second week. Note that it is considered poor engineering
practice to make lab book entries at a later time, after the lab session has concluded.
Delaying the recording of notes leaves open the possibility of entering inaccurate or
incomplete information.

~14 ~

