
Lab	#10:	Player	Controlled	Character	
	

Introduction	
Up	to	this	point,	the	user	inputs	in	past	labs	have	each	resulted	in	a	unique	output:	a	distinct	
music	note	or	shape	to	be	displayed.	However,	the	operation	of	a	video	game	depends	on	both	
the	user	input	and	the	current	state.	In	this	lab,	you	will	implement	the	simplistic	backbone	of	a	
top-down	video	game.		
	

State-Change	Approach	to	Gaming	
The	operation	of	a	video	game	can	be	conceptualized	as	a	series	of	hierarchical	states.	For	
simplicity’s	sake,	we	will	discuss	this	in	the	context	of	three	main	‘top-level’	states:	Initialize,	
Run,	and	Pause.	These	three	states	can	be	transitioned	to	using	user-inputs	or	internal	flags	
that	are	set	during	operation.	Figure	1	shows	a	simplistic	approach	to	this	design,	in	which	
pressing	the	‘Reset’	key	will	send	the	game	into	the	Initialize	state	and	pressing	the	‘Pause’	key	
will	enter	or	exit	the	Pause	state.	These	three	states	illustrate	the	backbone	of	a	simple	video	
game.	
	
Now	let	us	examine	what	takes	place	within	the	‘game’	portion,	or	Run	state.	During	the	Run	
state,	each	component	of	the	game	(characters,	enemies,	sounds,	etc.)	is	identified	by	its	own	
set	of	states.	For	example,	the	player	character	in	a	top-down	video	game	may	be	represented	
by	a	pair	of	coordinates	that	indicate	where	on	the	display	the	character	should	be.	These	
states	can	be	changed	by	different	user	inputs,	such	as	the	D-pad’s	arrow	keys.	Likewise,	the	
health,	inventory,	or	any	other	status	of	any	character	(player-controlled	or	otherwise)	can	be	
thought	of	as	a	set	of	states.	Figure	2	shows	a	simple	diagram	of	how	a	player	controlled	
character’s	position	can	be	conceptualized	as	a	set	of	states.	The	final	task	that	must	be	
completed	upon	each	change	of	any	character’s	state	is	the	updating	of	the	display:	if	any	
character	has	moved,	the	player	needs	to	see	it!	
	

	
Figure	1:	Simple	State	Diagram	of	Video	Games	



	

	
Figure	2:	State	Diagram	of	Player	Coordinates	

Assignment	Overview	
For	this	week’s	lab,	your	STM32L100RC	microcontroller	is	required	to	display	a	player	
controlled	character	and	play	appropriate	sounds.	The	character	should	move	in	the	directions	
indicated	by	the	D-pad	keys	and	a	short	0.1	second	duration	beep	should	sound	when	they	are	
pressed.	When	the	‘Pause’	key	is	pressed,	the	game	should	sound	a	beep,	but	no	following	
directional	inputs	will	have	an	effect	on	the	character	displayed	or	make	a	sound	until	the	
‘Pause’	key	is	pressed	again.	When	the	‘Reset’	key	is	pressed,	regardless	of	whether	or	not	the	
game	is	paused,	the	player	controlled	character	should	return	to	the	bottom	left	corner	of	the	
LED	display	matrix	and	the	song	played	in	last	week’s	lab	should	play.	
	

Pre-Lab	Assignment	
Modify	the	code	from	last	week	to	implement	the	functionality	described	above.	Give	special	
thought	to	the	following:	

1. How	will	the	character’s	position	be	displayed	and	stored?	
2. How	will	you	determine	which	operating	state	you	are	in?	
3. What	needs	to	happen	in	the	Initialize	state	for	this	game?	

	

Laboratory	Experiments	
1. Record	all	observations	and	problems	you	have	in	your	lab	notebook	
2. Check	all	wiring	from	prior	labs	before	powering	up	EEBoard	and	STM32L100RC	
3. Observe	the	movement	of	the	player	controlled	character	and	verify	it	is	what	you	

intended	
4. If	time	permits,	try	to	implement	a	second	character	that	moves	in	the	same	manner	as	

the	first.	If	the	two	characters	collide,	perform	the	same	action	as	the	‘Reset’	key	



	

Laboratory	Report	
1. Discuss	how	you	stored	information	regarding	the	position	of	your	character.	
2. What	would	need	to	be	changed	to	implement	the	simple	game	in	Part	4	of	the	

Laboratory	Experiments	section?	
3. What	kinds	of	games	can	be	implemented	with	a	simple	control	scheme	like	this?	What	

if	we	added	a	button	or	changed	the	functionality	of	the	buttons?	


