
Lab	#9:	Scrolling	Images	and	Melodies	
Introduction	
In	order	to	construct	an	interactive	video	game,	you	will	need	to	provide	both	audio	and	visual	
feedback	to	the	player.	This	week’s	lab	provides	an	introductory	methodology	to	simple	
animations	and	music	playing.	The	main	objectives	are	to	successfully	toggle	between	static	
images	(the	arrows	you	have	been	displaying)	and	animations,	as	well	as	between	short	beeps	
and	a	full	melody.	

Melody	Overview	
For	this	week’s	lab,	your	STM32L100RC	microcontroller	is	required	to	play	a	song	when	the	
RESET	button	is	pressed.	The	song	is	to	be	played	through	an	8-Ω	speaker	driven	by	the	audio	
driver	circuit	constructed	in	last	week’s	lab.	The	audio	signal	will	be	a	variable	frequency,	50%	
duty	cycle	PWM	signal.	In	order	to	play	a	song,	the	frequency	of	this	signal	will	have	to	be	
changed	to	the	corresponding	music	note.	The	notes	must	be	played	in	the	correct	order	and	
changed	at	the	correct	time	to	play	a	song.	The	song	you	implement	on	your	microcontroller	
this	week	is	up	to	you;	however,	if	you	would	like	to	perform	a	simple	melody,	you	may	play	the	
Auburn	University	Fight	song.	Figure	1	and	Table	1	show	the	musical	notation	and	a	simplified	
“Music	for	Non-Musicians”	version	of	this	melody	respectively.	
	

Figure	1:	“War	Eagle	fly	down	the	field!”	
	

Lyric	 Music	Note	 Duration	(counts)	
War	 C	 2	
Ea-	 A	 1	
Gle	 G	 1	
Fly	 F	 0.5	



Down	 F	 0.5	
(rest)	 	 0.5	
The	 D	 0.5	
Field!	 C	 2	

Table	1:	Simplified	Representation	of	“War	Eagle”	

Animation	Overview	
For	this	week’s	lab,	your	STM32L100RC	microcontroller	is	required	to	display	a	simple	
animation	on	the	LED	matrix	you	have	set	up	in	previous	labs.	This	can	be	achieved	in	several	
ways,	but	two	simple	ways	will	be	described	for	you	to	implement	in	your	lab.	First,	this	can	be	
achieved	by	cycling	through	several	simple	images	in	a	specified	pattern:	Figure	2	shows	the	
three	images	necessary	to	make	Mario	run	in	his	NES	debut.	Additionally,	you	may	implement	a	
simple	animation	on	your	microcontroller	by	displaying	a	‘scrolling	text’	image.	For	this	lab,	you	
may	implement	any	animation	you	would	like	using	either	methodology;	however,	if	you	would	
like	to	continue	the	Auburn	University	theme,	Figure	3	shows	one	possibility	for	scrolling	text	
that	says	‘AUBURN!’.	The	image	for	a	scrolling	text	image	can	be	stored	into	a	32-bit	or	64-bit,	
which	can	be	scrolled	through	by	masking	8	bits	at	a	time.	
	

	
Figure	2:	Sprites	of	Mario	Running	

	

	
Figure	3:	‘AUBURN!’	Scrolling	Text	Image	



Pre-Lab	Assignment	
Modify	the	code	from	last	week’s	lab	to	play	a	song	and	display	an	animation	when	the	‘RESET’	
button	is	pressed.	When	any	other	key	is	pressed,	the	static	image	corresponding	to	that	button	
should	be	displayed	and	a	0.1	second	duration	beep	should	be	heard.	The	song	played	and	the	
animation	displayed	can	be	any	of	your	choosing,	so	be	creative!	
	
Things	to	consider	when	planning	and	drafting	your	code:	

1. Can	the	timer	you	have	configured	to	display	images	on	the	LED	matrix	be	used	to	
change	music	notes?	

2. Will	the	same	strategy	work	for	a	multi-image	animation	(Mario	running)	as	a	scrolling	
text	animation?	

	

Laboratory	Experiments	
1. Record	all	observations	and	problems	you	have	in	your	lab	notebook.	
2. Check	all	wiring	from	prior	labs	before	powering	up	EEBoard	and	STM32L100RC	
3. Observe	the	audio	signal	for	your	song	on	the	Waveforms	digital	Oscilloscope;	annotate	

a	screenshot	to	show	the	different	music	notes	played	and	their	duration	
4. Observe	the	values	on	the	columns	of	the	LED	matrix	using	the	Logic	Analyzer;	can	you	

obtain	a	screenshot	of	the	animation	changing?	

Laboratory	Report	
1. Include	all	screenshots	with	annotations	
2. Discuss	your	chosen	strategy	of	animation	and	why	you	could	or	couldn’t	obtain	a	

screenshot	of	the	animation	changing	
3. Discuss	possible	methods	for	animating	the	player-controlled	motion	of	a	character	

around	the	LED	matrix.	


