
ELEC 3040/3050 Lab 5
Alternate Assignment

The Directional Input Pad
The purpose of this lab is to use the microcontroller to control a peripheral device, interfaced
through parallel I/O ports and accessed using interrupt-driven I/O. The peripheral device for this
lab is a directional input pad (D-pad), as used on a variety of products (game consoles, cell
phones, etc.). The D-Pad is pictured in Figure 1. Note that there are 5 pins on the side of the
keypad. These are designed to be placed directly into a standard breadboard. The D-pad is
designed to electrically mimic the keypad simulated in CodeWarrior that has been used in
numerous ELEC 2200 projects. However, it should be noted that the D-pad only contains two
columns and three rows, rather than four rows and four columns. Refer to the keypad scanning
example in Chapter 18 of the Cady text book (Hardware and Software Engineering), or Chapter
14.8 of the Y. Zhu text book (Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C, 2nd Ed.), or Chapter 8.4 of the Valvano text book (Introduction to
ARM Cortex-M Microcontrollers). One of these three books will have been used in ELEC 2220.
Again, keep in mind: the same keypad scanning algorithm will work for both the 4x4 standard
keypad and the 3x2 provided D-pad for this lab.

Figure 1: Directional Input Pad with Two Face Buttons

D-pad Button Opcode
Up 0x01
Left 0x02

Right 0x04
Down 0x08
Pause 0x10
Reset 0x20

Table 1: D-pad Button Opcode Values

Interfacing the D-Pad to the Microcontroller
Refer to the presentation slides for the Monday lab lecture for a description of keypad operation
and interfacing to a microcontroller. Keypad scanning examples are provided in Chapter 18 of
the Cady text book and Chapter 8.4 of the Valvano text book.

Lab Objective
For this lab, the “main program” is to display a binary-coded decimal number on 4 LEDs, with
the number incrementing approximately once per second in an endless loop, and rolling over
from 9 to 0. If a D-pad button is pressed, as detected via an interrupt, the D-pad scanning routine
should identify and display the button’s opcode on the LEDs, instead of the count. This opcode
number should remain on the LEDs for approximately 5 seconds, and then the program should
resume displaying the incrementing count on the LEDs. The counter should not stop during these
5 seconds, so when counter display resumes, the count should be approximately the time of the
interrupt plus 5. (Hint – if using interrupts, the interrupt service routine can set a global variable
that can be tested by the main program to see if a D-pad opcode is being displayed.

Pre-Lab Assignment
Reading
Review the Lab 5 lecture slides and the previous labs on GPIO pins and interrupts. In addition,
the textbook chapters listed in the first paragraph of this document include examples of matrix
keypads which implement a similar algorithm.

Hardware Design
The I/O port connections to the “peripheral devices” should be made as listed in Table 1. GPIO
pins PC[3:0] are to drive the four LEDs displaying the incrementing count. GPIO pins PB[5:4]
and PB[2:0] are to be used for the D-pad interface. To generate an interrupt signal on a button
press, a 4-input AND gate (CMOS 4082B chip) will be needed to combine the row signals to
drive the IRQ# line (GPIO pin PA1). You may use additional LEDs for debugging, if you wish.
Note that internal pull-up resistors should be activated for the GPIO pins connected to the D-pad
row lines.

GPIO Pins Connected Devices
PB [2:0] D-Pad row lines 3-1 (inputs)
PB [5:4] D-Pad column lines 2-1 (outputs)
PC [3:0] LEDs (for the counter)

PA1 IRQ#
Other pors LEDs for debug, as needed
Table 2. Parallel Input/Output port connections

In your laboratory notebook sketch a diagram that corresponds to the connections described in
Table 1. Show details of how the microcontroller, D-pad, 4-input AND gate, and EEBoard (test
instruments) are to be connected. Do this prior to lab.

To aid in debugging, be prepared to use the logic analyzer and/or oscilloscope to observe the
states of the various peripheral device lines.

Software Design
Review the earlier labs to recall how to initialize and access I/O ports, set/clear/test individual
bits of a word, and set up interrupt-driven operation. Thoroughly comment your program to
demonstrate your understanding of the keypad scanning operation.

The test program should comprise a main program and an interrupt service routnine. The main
program should configure all GPIO ports used, configure the interrupt request pin and NVIC,
initialize the column lines of the keypad to all 0’s, enable interrupts, and then enter a continuous
loop. Note that all four column lines should initially be driven low so that any pressed key will
cause one of the four row lines to go low and trigger an interrupt. In the main program’s
continuous loop, the 4-bit counter should be incrementing once per second, and displayed on the
4 LEDs. The keypad scanning routine should be executed if the CPU is interrupted by a pressed
key. If a pressed key is detected, the key number should be displayed on the LEDs, instead of the
count, for approximately 5 seconds. Refer to the discussion above for a description of the D-pad
scanning process.

In your laboratory notebook, record the following prior to the lab.

1. Flowcharts for program and the interrupt service routine
2. Draft program and the interrupt service routine (or directions to content on H: drive)
3. A plan for testing the D-pad

NOTE: It has been found that there is often a short delay between writing a pattern to an
output port and observing that pattern on the output pins. Therefore, you should insert a few
“dummy” instructions following a write to the output port driving the columns, before testing
the input port driven by the rows.

Lab Procedure
1. Double-check the ground connection between the Discovery board and the EEBOARD.
2. Mount the D-pad and AND gate chip on your breadboard and connect them to the

microcontroller as shown in Table 1. You should also connect the keypad signals and
AND gate output to DIO pins, so that you can use the logic analyzer for debugging. Note
that you should activate the internal pull-up resistors for the input port hardware.

3. Enter, compile, and download your D-pad scanning program. Execute your program,
verifying the correct opcode is displayed for each of the 6 buttons. (Record your
observations of the reaction to each button press in your notebook).

4. During debugging, verify that you can access the GPIO ports properly, using the test
methods learned in previous labs. If you experience problems, you might consider testing
the I/P ports using the test programs from Labs 2-3-4 and the logic analyzer.

5. Demonstrate your working programs to the lab instructor.
6. If time permits, investigate the button bouncing with the oscilloscope to determine if, and

for how long, bouncing occurs following a button press.

Possible Information to Include in Future Lab Reports
1. Briefly describe your hardware design. Include a schematic diagram
2. Include a printout of your C program, including well thought through comments.
3. Provide two logic analyzer screen captures, one showing where the LEDs changed from

an incrementing count to a button’s opcode and the other showing the IRQ pin and the D-
pad row and column immediately following a button press. (This should show your
scanning algorithm being executed.)

4. Provide an oscilloscope screen capture, showing the IRW pin or one of the row lines
following a button press, to determine if there is any “bouncing” associated with the key
press, and if so, how long the bouncing lasts.

5. Discuss your results.

