
Lab	11:	Displaying	Multiple	Characters	and	
Randomly	Generated	Characters	
	

Introduction	
A	key	component	to	video	games	is	the	presence	of	an	obstacle	or	challenge	which	the	player	
must	overcome.	The	simplest	form	this	challenge	can	take	is	the	mere	presence	of	an	enemy	
character.	When	designing	a	game,	care	must	be	taken	to	ensure	that	the	generation	of	
enemies	does	not	follow	a	predictable	pattern,	or	the	game	loses	its	challenge.	This	week,	you	
will	use	the	STM32L100RC	microcontroller	to	generate	a	random	pattern	of	enemy	characters	
that	will	move	across	the	screen.	
	

Random	Number	Generation	in	C	
Random	number	generation	in	electronics	has	long	been	a	topic	of	research	and	investigation.	
The	standard	practice	is	to	use	a	random	number	generation	function	that	relies	on	a	seed	
number.	When	writing	software	to	implement	this,	the	programmer	will	usually	provide	the	
seed	number	based	on	the	current	time	when	the	program	is	executed;	this	allows	for	
theoretically	random	number	generation,	since	the	seed	number	is	different	for	each	execution	
of	the	program.	However,	the	STM32L100RC	does	not	support	the	time.h	library	necessary	to	
use	the	current	time	as	the	seed	value.	
	
In	order	to	use	the	random	number	generation	function	of	the	STM32L100RC,	include	the	
stdlib.h	library	and	use	the	following	lines	of	code:	
	

srand(NUMBER); //seed random number generator
random = rand() % N; //generate a random number between 0 and N-1

Figure	1:	Comparison	of	100	Numbers	Generated	with	Different	Seed	Values	

0 1 2 3 4 5 6 7 8 9

Number Generated

0

2

4

6

8

10

12

14

16

18

20

Ti
m

es
 G

en
er

at
ed

Random Number Generation with Seed Value of 10

0 1 2 3 4 5 6 7 8 9

Number Generated

0

2

4

6

8

10

12

14

16

Ti
m

es
 G

en
er

at
ed

Random Number Generation with Seed Value of 11

Assignment	Overview	
This	week,	you	will	be	responsible	for	modifying	the	previous	week’s	code	to	generate	a	‘rain’	
animation	in	addition	to	last	week’s	simple	moveable	character	game.	Single	pixel	characters	
are	to	spawn	in	the	top	row	of	the	LED	display	matrix	in	a	random	column	at	a	constant	rate.	
Additionally,	these	single	pixels	should	move	down	at	the	same	rate	that	new	pixels	spawn	in	
the	top	row;	this	should	create	a	the	effect	of	a	‘rain’	animation.	In	addition	to	this	rain	
animation,	the	player	character	from	last	week’s	lab	must	be	present	and	maintain	all	previous	
functionalities.	When	the	‘Pause’	key	is	pressed,	the	rain	should	pause	in	place	as	well	as	the	
player	controlled	character.	When	the	‘Reset’	key	is	pressed,	the	rain	pixels	currently	on	screen	
should	be	cleared	when	the	player	controlled	character	is	moved	to	the	bottom	left	corner;	this	
is	to	give	the	effect	of	a	true	reset.	
	
In	addition	to	the	aforementioned	functionality,	you	will	be	responsible	for	investigating	the	
distribution	of	the	randomly	generated	values	for	different	seed	numbers.	Refer	to	the	
materials	on	the	course	webpage	for	instructions	on	logging	data	from	the	debug	window.	
	

Pre-Lab	Assignment	
Modify	the	code	from	last	week’s	lab	to	implement	the	functionality	described	above.	Give	
special	consideration	to	the	following:	

1. How	will	the	location	of	each	‘rain’	pixel	be	stored	and	displayed?	
2. How	will	the	location	of	all	characters	be	displayed	at	the	same	time?	
3. How	often	will	the	display	values	need	to	be	updated	for	there	to	be	no	flickering	or	

lagging	of	displayed	characters?	
	

Laboratory	Experiments	
1. Record	all	observations	in	your	lab	notebook	
2. Graph	the	histograms	of	the	recorded	random	numbers	generated	for	at	least	3	

different	seed	values.	Which	seems	to	perform	the	best?	How	many	data	points	are	
needed	for	the	histogram	to	show	a	truly	random	distribution?	

3. What	would	need	to	be	changed	to	make	collisions	between	the	player	character	and	
the	rain	characters	cause	the	screen	to	reset?	What	would	need	to	be	changed	to	keep	
track	of	how	many	‘rain	drops’	are	dodged?	

